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Abstract

When learning Fourier analysis in a first course on signals and systems, it can be over-
whelming to keep track of the Four Fourier transforms: the CT Fourier series, the DT
Fourier series, the CT Fourier transform, and the DT Fourier transform. Additionally,
these are often not related in a very concrete way when notions of sampling and approx-
imation are studied. The goal of this document is to consolidate all of these things, and
show how each transform can be built out of any of the other transforms. Conceptually,
then, if you have a handle on one of them, you have a handle on all of them.

The approach of this document will not focus on numerical calculations. We will com-
pletely ignore sign changes, time reversals, conjugations, convergence conditions, etc. Work-
ing out the numerical details is part of learning how to really use Fourier analysis in prac-
tice; all we are doing here is providing scaffolding to facilitate that understanding.

1 The Setup

The first part of the course was devoted to getting a handle on the basics of linear time-
invariant systems. One day in class, we made the observation that complex exponentials are
eigenfunctions of said systems, that is to say, when you input a complex exponential into an
LTI system, the output is just a scaled version of that complex exponential. So, if we can
break a signal down as a sum (or integral, perhaps) of complex exponentials, we should be
able to very easily understand how any LTI system will behave with respect to that signal.
This led us naturally to the Fourier transform, which considers the special case of complex
exponentials with purely imaginary exponents. We spent some time building up a “zoo” of
these Fourier transforms, each one designed for a different type of signal.

1.1 Four Fourier Transforms

The first one was the continuous-time (CT) Fourier series (CTFS), which represents periodic
signals in continuous time as a sequence of coefficients. As notation, we might call a CT signal
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with period T by the name xT (t), and write it something like this:

xT (t)
FS←→ a[k].

We have used the notation a[k] here for the Fourier series rather than the usual ak, but we
will find this useful for unifying all of the representations.

Following this, we moved to the discrete-time (DT) Fourier series (DTFS), which represents
periodic signals in discrete time, once again, as a sequence of coefficients. This time, however,
the sequence of coefficients is periodic, much like the original signal. Let us denote a DT
signal with period N by xN [n], so that we can write the DT Fourier series like this:

xN [n]
FS←→ aN [k].

Notice how we have denoted the Fourier series in discrete-time by aN [k]; this reflects the fact
that the DT Fourier series is periodic with the same period as the input signal.

After defining these two transformations for periodic signals, we then asked how we could rep-
resent non-periodic signals using similar techniques. This led us to our most general trans-
formation: the Fourier transform. Let us continue to ignore questions about convergence,
existence, and so on, and plow on ahead.

The CT Fourier transform (CTFT) has the most remarkable symmetry of all of the transforms
we have considered: it turns signals in continuous-time to functions1 of a real (continuous!)
variable. For a CT signal x(t), we write this as

x(t)
FT←→ X(jω),

where ω denotes real-valued frequency. Unlike the previous two transforms, the “type” of
the representation doesn’t seem to change too much: both x(t) and its transform X(jω) are
functions of a real variable.

This, of course, is not the case for the DT Fourier transform (DTFT), which maps general DT
signals to periodic functions of a real variable. For a DT signal x[n], we write this as

x[n]
FT←→ X(ejω).

Our choice of notation for the transform X is perhaps the most interesting so far: we think
of it as a function of ejω for a real variable ω. Clearly, ejω is a periodic function of the real
variable ω with period 2π, so the transform is a periodic function of a real variable with period
2π as well.

1I won’t call them “signals,” as we like to reserve that term for functions in the time-domain.

2



1.2 Summary

It will be useful to write down all Four of the Fourier transforms together, which will hopefully
prompt us to notice some similarities between them:

xT (t)
FS←→ a[k]

xN [n]
FS←→ aN [k]

x(t)
FT←→ X(jω)

x[n]
FT←→ X(ejω).

If you would like to stop here, writing these down is probably a good idea in preparation for
your next exam. However, the rest of this document will explore the relationships between
these four rows, so I suggest reading onward if you are interested.

2 The Hook

Each of the Fourier transforms has a particular formula for analysis and synthesis, which we
have discussed in great detail in class. We will cast those aside for now, and look simply at the
type of function on either side of the transform above. This will lead us to notice some pleasant
symmetries and relationships between these transforms, illuminating the notion that all of
these are, in the end, doing the same thing.

2.1 Continuous Circles

At the end of the discussion of the DTFT, we pointed out how the the Fourier transform of a
DT signal x[n] is denoted by X(ejω), where ω is a real variable. Notably, since ejω is a periodic
function of ω with period 2π, so is X(ejω).

Let us dig deeper into this. Remember Euler’s formula: ejω = cos(ω) + j sin(ω). This tells us
that as we vary ω, the function ejω plots out a circle in the complex plane.

Exercise 1: The unit circle

Plot out the function ejω on the complex plane. See that it is the same thing as the unit
circle.

So, noting that ejω is a codeword for “the unit circle,” we can think of X(ejω) as “a function on
the unit circle.” Perhaps we are only used to functions being defined on the real line, or maybe
even on the integers (think, CT signals and DT signals, for example). But functions can be
defined on anything! In this case X takes in a point on the circle as input, and produces some
complex number as output. As useful notation, let us use the symbol S1 to denote the circle,
and then use the notation X : S1 → C to tell ourselves what sort of function the DTFT of a DT
signal is, namely, a function that maps the unit circle to the complex numbers.

We can do the exact same thing for periodic signals in continuous time. A periodic signal xT (t)
is such that for all t, we have xT (t+ T ) = xT (t), where T denotes the period. In our treatment
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of periodic signals, we convince ourselves that we only really care about the signal as it is
defined over a single period: this is a good idea! In fact, it allows us to pretend that a periodic
signal is a function on the circle, just like the DTFT. Namely, think of xT in the following way.
For a given point (cos(θ), sin(θ)) on the circle, define x̃T (θ) as xT (θT/2π).

Exercise 2: Continuous circular function

Convince yourself that x̃T and xT are “the same,” in some sense.

The “continuous-time circular signal” x̃T (θ) essentially takes xT (t) and coils it around the
circle. Although the real line is infinite in length and the circle has finite circumference, we
can do this without any issues, since xT is periodic. In fact, notice that xT (t) = x̃T (t2π/T ) for
any t. Using this, we can once again think of a periodic signal as a function x̃T : S1 → C.

2.2 Discrete Circles

Thinking of periodic functions as being defined on the circle is not restricted to continuous
time. Take a look at the DT Fourier series:

xN [n]
FS←→ aN [k].

The DT Fourier series turns periodic DT signals into periodic functions on the integers. We
often think of DT signals as approximations of CT signals, so it is only natural to try and
fit this into the idea of a function on the circle like before. But the circle is continuous, not
discrete, so this poses a bit of a problem.

The solution lies in discretizing the circle. The circle S1 is given by the set of points (cos(θ), sin(θ)).
Equivalently, it is the set of all complex point ejω for real-valued ω. To build a “discrete circle,”
we just discretize the θ or the ω parameter. For the period N , define the N -discrete circle as

S1
N = {ej2πk/N , k = 0,±1,±2, . . .}.

Exercise 3: Discrete unit circle

Plot out S1
N on the complex plane, and see that it is indeed a discretization of the circle

S1. Count how many points S1
N consists of.

Although we have defined S1
N as a seemingly infinite set of complex numbers (as we consider

infinitely many values of k), the DT periodicity of ej2πk/N implies that S1
N consists of only N

points, evenly spaced around the unit circle. Great! Now we can think of both sides of the
DTFS as functions on a discretized circle. Namely, build two “discrete-time circular functions”
in the following way:

x̃N [2πn/N ] = xN [n]

ãN [2πk/N ] = aN [k].

Exercise 4: Discrete circular function

Convince yourself that x̃N and xN are “the same,” in some sense. Do the same for ãN
and aN .

4



With this idea in hand, we can now treat periodic DT signals such as xN as functions x̃N :
S1
N → C, and similarly treat their DT Fourier series aN [k] as functions ãN : S1

N → C.

3 The Sting

In The Hook, we showed how periodic functions can really be thought of as functions on the
circle, whether discrete or continuous. Let us rewrite our chart of transforms again, with
some different notation.

(R→ C) FT←→ (R→ C)

(S1 → C) FS←→ (Z→ C)

(Z→ C) FT←→ (S1 → C)

(S1
N → C) FS←→ (S1

N → C).

Woah! What happened here? Where did x go? What we have done with this chart is replace
the functions x(t), xT (t), X(jω), et cetera, with their “type signatures” (in the computer science
sense). That is, instead of writing xT (t) for a CT periodic signal, we write (S1 → C) to denote
that it is a map from the circle to the complex numbers. Similarly, instead of writing x[n] for
a DT signal, we write (Z → C) to denote that it is a map from the integers to the complex
numbers.

Some things pop out when we write the Four Fourier transforms like this. First, both the
CTFT and the DTFS preserve the type of function: the CTFT turns functions of a real vari-
able into functions of a real variable, and the DTFS turns functions on the discrete circle to
functions on the discrete circle. Second, although the CTFS and the DTFT do not have that
property, they are intertwined in some way. The CT Fourier series turns functions on the
circle into functions on the integers, while the DTFT does the opposite, turning functions on
the integers into functions on the circle.

3.1 Inclusion and Approximation

Our ultimate goal is to relate these four transforms to one another. All we have done thus far
is point out that they have some things in common. Let us start relating the types of functions
to one another using inclusion maps and approximation maps.

Inclusion maps. Think back to how we showed that the CT Fourier series can be thought
of as a special case of the CT Fourier transform. We noted that CT periodic signals are them-
selves regular-ole’ CT signals, and can thus admit a notion of a Fourier transform. The Fourier
transform of these signals turns out to be a sequence of impulses, which correspond exactly to
the CT Fourier series.

Of course, this is a one-way street. It is not true that all CT signals are periodic, so we can’t
take the CT Fourier series of a general CT signal. To denote this, we will use something
that we call an inclusion map. In the chart above, we denote signals/functions by their type

5



signatures. To describe the idea that CT periodic signals are CT signals, but not the other
way around, we will use a “hooked arrow,” and write

(S1 → C) ↪→ (R→ C).

The “inclusion” transformation does nothing to the function that it is applied to: all it does is
change its “type” to a less restrictive one.

Exercise 5: CTFS from CTFT

Consider some CT periodic signal xT (t). Derive its Fourier series in two different ways:
one using the CT Fourier series directly, the other using the CT Fourier transform.
Describe how to go from the CT Fourier series to the CT Fourier transform and back.
(You don’t actually need to do direct computations, just convince yourself they are the
same.)

When you do the exercise above, another inclusion relationship will appear: one mapping the
CT Fourier series coefficients to the CT Fourier transform. The notation for this one2 is given
by

(Z→ C) ↪→ (R→ C).

Exercise 6: DT periodic signals as DT signals

Work out the inclusion map for DT periodic signals to treat them as DT signals. (Hint:
the map looks like (S1

N → C) ↪→ (Z→ C).)

An important property of an inclusion map is a kind of invertibility. In general, there is no
“inverse function” of an inclusion map: said maps are not necessarily surjective. However, in-
clusion maps are injective, meaning that distinct points in the domain are mapped to distinct
points in the range.

Approximation maps. So periodic signals can be treated as regular signals by using in-
clusion maps, which gives us one potential way to dance around the rows of the chart we are
building. There is another way that we can move around this chart: by taking limits.

Recall our initial derivation of the CT Fourier transform for finite duration signals. We did a
“periodic extension” of that finite duration signal to build a periodic signal, and then took the
Fourier series of that periodic signal. The Fourier transform was then defined as the limit of
the Fourier series as the period is made larger and larger. We then argued that for signals
with finite energy, this process doesn’t break down too badly.

This procedure illustrates to us that general CT signals (at least, those with finite energy),
can be approximated in some sense by periodic CT signals with extremely large period. Let
us come up with another piece of notation to describe the idea of “taking a limit” in this way:

(R→ C)⇝ (S1 → C).
2Ok, so strictly speaking things with Dirac delta functions are not really functions of the type (R → C). But

just go with it, everything works out fine.
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At first glance, it might look like we wrote this backwards: aren’t we thinking of CT signals
as limits of periodic CT signals? Shouldn’t the arrow point the other way, then? In this case,
no. All we want to describe is the idea that we can take a CT signal and approximate it
arbitrarily well by a periodic CT signal. Doing that approximation takes a CT signal as input,
and produces a periodic CT signal as output.

There are other reasonable approximation maps that you can build. Another one we will
consider is in discrete-time:

(Z→ C)⇝ (S1
N → C).

In this case, N varies depending on how “good” you want your approximation to be.

Exercise 7: Approximation by sampling

We haven’t learned about sampling yet, but it is reasonable to approximate a CT signal
by a DT signal using evenly spaced samples.

1. Build up some conception of an approximation map for this procedure. Its type
signature should look like (R→ C)⇝ (Z→ C).

2. Do the same thing for sampling periodic CT signals: think of an approximation
map that looks like (S1 → C)⇝ (S1

N → C).
3. Does it make sense to compose these approximation maps to build new ones?
4. Think back to your intro course (ELEC241 at Rice) when the sampling theorem

was introduced to you. Under what conditions can the sampling approximation
maps be thought of as exact? That is, with no loss of information.

3.2 One Diagram to Rule Them All

We are now ready to draw one big picture that summarizes the Four Fourier transforms and
the relationships between them. Figure 1 illustrates all of the relationships that we have
built up. This is (something like) a commutative diagram. That is, you can follow the arrows
on this diagram in a way such that the computation to get from one point to another does not
depend on the path you take.

Fourier transforms take in functions of one type and put out functions of a (possibly different)
type. By using inclusion and approximation maps, we can relate functions of different types
to one another. Then, composing Fourier transforms with these maps lets us walk around this
diagram however we please.

Recall our derivation of the CTFT from the CT Fourier series. The first step was to approx-
imate a signal by a periodic one. Then we take the Fourier series. Then, we show that as
the periodic approximation improves, the Fourier series converges in a way that resembles a
Riemann sum. In some sense, Riemann sum approximations are the same as taking evenly
spaced samples of a function. On the left column of the diagram, we approximated by doing
a “periodic extension” of a signal with finite duration. On the right column, we approximated
by taking evenly spaced samples of the Fourier representation. As an approximation on one
side improves, so does the approximation on the other side: the Fourier transforms couple the
approximation maps in this way.
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(R→ C) (R→ C)

(S1 → C) (Z→ C)

(Z→ C) (S1 → C)

(S1
N → C) (S1

N → C)

CTFS

DTFT

CTFT

DTFS

Time domain Fourier kingdom

CT

DT

Figure 1: Chart of the Four Fourier transforms. Blue arrows denote Fourier transforms.
Orange arrows denote inclusion maps. Black squiggly arrows denote approximation maps.
Black straight arrows denote equality, namely that the two types of functions are the same.

Exercise 8: DTFT from the DTFS

Take the limit of the DTFS to get the DTFT, using the same method that we used to get
the CTFT as the limit of the CTFS. Trace out how this works on the diagram.

I said that we can “walk around this diagram however we please,” but there is one exception
that comes about in the use of the diagonal arrows across the center.
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Rule 1: Use of the Diagonal Arrows

From this diagram, the relationship between the CTFS and the DTFT is put on full
display. Namely, they are basically the same thing! To see this, write down the analysis
and synthesis equations for both and compare.
However, one needs to be careful with this. Indeed, this diagram allows you to jump
around different types of functions by following the arrows, but the diagonal arrows
need special care. The rule is this: if you cross between the time domain and the Fourier
kingdom using one of the diagonal arrows, you need to do it a second time before you
finish.
To see why this is the case, let us consider the relationship between periodic CT signals
and the periodic functions given by the DTFT. Both have the “type signature” (S1 → C),
which allows us to move between the two with very little friction. However, the former
is thought of as a “time function” and the latter is thought of as a “frequency function.”
When crossing from one to the other using the diagonal arrows, you can imagine that
a citizen of the time domain is temporarily trespassing in the Fourier kingdom, and
needs to return home at some point.

Examples. Let us now consider some examples. We will follow arrows on the diagram to
show how some of the variants of the Fourier transforms can be derived in terms of the others.

Example 1: CTFT from the DTFS

The simplest Fourier transform, in some sense, is the DT Fourier series, and the most
complicated is the CT Fourier transform. Let’s build up the latter from the former.
Consider some CT signal x(t). We can approximate it by a periodic DT signal by com-
posing two approximation maps: call this new signal xN , where N is determined by how
good of an approximation we need. Then, we can compute the DTFS of xN to get some
aN . Looking at the diagram, this is the same as computing the CTFT of x(t) and then
approximating it by some DT Fourier series aN [k].

Example 2: Duality

Remembering the distinction between the CT Fourier series and the DTFT is hard
sometimes. Let us pick our favorite: since we learned the CT Fourier series first, we will
go with that one. We will now use the diagram to give us instructions on computing the
DTFT for some discrete-signal x[n]. First, we will “cross” from the time domain into the
Fourier kingdom via the black diagonal arrow. This yields a Fourier series a[k] := x[k].
Then, we can use the synthesis equation for the CT Fourier series to construct a peri-
odic CT signal y(t) with period T = 2π. Then, we go back the Fourier kingdom via the
black diagonal arrow, yielding the DTFT X(jω) := y(ω).
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Exercise 9: Duality

Repeat the above example “Duality” to write the CT Fourier series in terms of the syn-
thesis equation of the DTFT.

Example 3: “Inverting” the inclusion map

We pointed out that inclusion maps are injective, but not surjective. That is, there are
only certain types of functions that you can define a unique inverse on. If we are careful,
we might be able to leverage this to invert an inclusion map and prove nice properties
of LTI systems.
Consider the LTI system described by convolution with a pulse train, that is, one with
impulse response

h(t) =
∞∑

k=−∞
δ(t− k).

We know that the CTFT of h(t) is also a pulse train. Then, for some CT signal x(t), we
have, by the convolution theorem

(x ⋆ h)(t)
FT←→ 2π

∞∑
k=−∞

X(j2πk)δ(ω − 2πk).

Notice that the inclusion map (Z → C) ↪→ (R → C) yields the same type of pulse
train. In this case, we can turn X(jω)H(jω) into a CT Fourier series a[k], where a[k] =
2πX(j2πk). That is, in this special case, we can uniquely invert the inclusion map.
Applying the synthesis equation of the CT Fourier series yields a periodic signal that
we will call y(t) with period T = 1. Treating this periodic CT signal as a CT signal via
the inclusion map (S1 → C) ↪→ (R→ C), we can confidently declare that the convolution
(x ⋆ h)(t) yields a periodic signal.

Exercise 10: Convolution with a periodic signal

Repeat the above example of “Convolution with a pulse train” when h(t) is a generic
periodic signal, other than a pulse train. Namely, show that for h(t) periodic, (x ⋆ h)(t)
is periodic for any x(t).

Exercise 11: Approximations of Inclusions

In the example “Convolution with a pulse train,” we considered a special case in which
an inclusion map can be inverted (due to being injective). For each of the inclusion
maps in the diagram where an approximation map in the opposite direction is present,
determine whether or not the approximation map is a suitable inverse for the inclusion
map.
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4 Index: The Sharp Bits

We index all of the maps pictured in Figure 1, apart from the Fourier transforms, which are
covered in class.

4.1 Inclusion Maps

Using traditional function notation, we will use a lowercase iota to denote an inclusion map.
For example ι : (S1 → C) ↪→ (R→ C) describes treating a periodic CT signal as CT signal.

4.1.1 Periodic CT signals to CT signals

ι : (S1 → C) ↪→ (R→ C)
(ιxT )(t) = xT (t)

4.1.2 CT Fourier series to CT Fourier transform

ι : (Z→ C) ↪→ (R→ C)

(ιa)(t) =
∞∑

k=−∞
a[k]δ(t− k2π/T )

4.1.3 Periodic DT signals to DT signals

ι : (S1
N → C) ↪→ (Z→ C)
(ιxN )(n) = xN (t)

4.1.4 DT Fourier series to DT Fourier transform

ι : (S1
N → C) ↪→ (S1 → C)

(ιaN )(ω) =
∑

k∈<N>

aN [k]δ(ω − 2πk/N)

4.2 Approximation Maps

We will use the letter Σ to denote a generic approximation map. For example, Σ : (R→ C)⇝
(Z→ C) describes sampling a CT signal to get a DT signal.

4.2.1 CT signals to periodic CT signals

Pick some period T > 0, and approximate the signal x(t) by a periodic signal as follows:

Σ : (R→ C)⇝ (S1 → C)

(Σx)(t) =

{
x(t) |t| ≤ T/2

periodic otherwise.
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As T →∞, the approximation becomes better and better.

4.2.2 CT signals to DT signals

Pick some T > 0, and sample the signal x(t) yielding

Σ : (R→ C)⇝ (Z→ C)
(Σx)(n) = x(nT ).

As T → 0, the approximation becomes better and better.

4.2.3 Periodic CT signals to periodic DT signals

For a periodic CT signal xT (t), pick an integer N > 0, yielding

Σ : (S1 → C)⇝ (S1
N → C)

(ΣxT )(n) = x(nT/N).

As N →∞, the approximation becomes better and better.

4.2.4 CT Fourier transform to CT Fourier series

Pick some Ω > 0, and sample the function X(jω) yielding

Σ : (R→ C)⇝ (Z→ C)
(ΣX)[k] = X(jkΩ).

As Ω→ 0, the approximation becomes better and better.

4.2.5 CT Fourier transform to DT Fourier transform

Pick some Ω > 0, and approximate the function X(jω) by a function on the circle as follows:

Σ : (R→ C)⇝ (S1 → C)

(ΣX)(ejω) =

{
X(jωΩ/(2π)) −π ≤ ω < π

periodic otherwise.

As Ω→∞, the approximation becomes better and better.

4.2.6 CT Fourier series to DT Fourier series

Pick some N > 0, and approximate the series a[k] by a periodic DT function as follows:

Σ : (Z→ C)⇝ (S1
N → C)

(Σa)[k] =

{
a[k] |k| < N

periodic otherwise.

As N →∞, the approximation becomes better and better.
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4.2.7 DT signals to periodic DT signals

Pick some N > 0, and approximate the DT signal x[n] by a periodic DT signal as follows:

Σ : (Z→ C)⇝ (S1
N → C)

(Σx)[n] =

{
x[n] |n| < N

periodic otherwise.

As N →∞, the approximation becomes better and better.

4.2.8 DT Fourier transform to DT Fourier series

Pick an integer N > 0, and sample the function X(ejω) yielding

Σ : (S1 → C)⇝ (S1
N → C)

(ΣX)[k] = X(ejk2π/N ).

As N →∞, the approximation becomes better and better.
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